

FIRE TEST REPORT FH 5027

CONE CALORIMETER TEST AND NZBC VERIFICATION METHOD C/VM2 **APPENDIX A PERFORMANCE OF SERATONE ESCAPE**

CLIENT The Laminex Group 1 O`Rorke Road Penrose Auckland New Zealand

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation.

PROJECT NUMBER:

ISSUE DATE:

PAGE

FT5026

4 March 2013

1 of 9

THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

TEST SUMMARY

Objective

To conduct cone calorimeter testing and reduce the data in accordance with ISO 5660 on client supplied specimens for the purposes of determination of the Group Classification in accordance with;

• New Zealand Building Code (NZBC) Verification Method C/VM2 Appendix A

Test sponsor

The Laminex Group 1 O`Rorke Road Penrose Auckland New Zealand

Description of test specimen

The products submitted by the client for testing were identified by the client as Seratone Escape, a nominally 4.5 mm thick high density fibre board (oil tempered hardboard) coated on the exposed face with a paint system.

Date of test

26th November 2012

Test results

For the purposes of compliance with the NZBC Verification Method C/VM2 Appendix A, the following classification is considered applicable to the material as described in Section 1, and others as discussed in Section 6.

Group Number Classification	3

LIMITATION

The results reported here relate only to the item/s tested.

TERMS AND CONDITIONS

This report is issued in accordance with the Terms and Conditions as detailed and agreed in the BRANZ Services Agreement for this work.

THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

CONTENTS

Signat	ories		4
Docum	ent Rev	vision Status	4
1.	Genera	al	5
	1.1	Sample measurements	5
2.	Experi	mental procedure	5
	2.1	Test standard	6
	2.2	Test date	6
	2.3	Specimen conditioning	6
	2.4	Specimen wrapping and preparation	6
	2.5	Test programme	6
3.	Test re	esults and reduced data	7
	3.1	Test results and reduced data – NZBC C/VM2	7
4.	Summ	ary	3
5.		fication in accordance with NZBC Verification Metho 2 Appendix A	
6.	Discus	sion	9
7.	Conclu	ision	9

FIGURES

Figure	1	Representative	specimen	(back	face	of	on	left,	exposed	on	right
"Moons	hin	e")									5
Figure 2	2 R	ate of heat releas	se versus ti	me							8

	REPORT NUMBER:	ISSUE DATE:	PAGE:	PNW	ES
BRANZ	FH 5027	4 March 2013	3 of 9	B	A
		ONLY BE CLAIMED ON PRESENTATION OF THE COMPLET REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSI			

SIGNATORIES

Author

P. N. Whiting Senior Fire Engineer/Fire Testing Team Leader IANZ Approved Signatory

Reviewer

E. Soja Senior Fire Safety Engineer IANZ Approved Signatory

DOCUMENT REVISION STATUS

ISSUE NO.	DATE ISSUED	DESCRIPTION
1	4 March 2013	Initial issue

	REPORT NUMBER:	ISSUE DATE:	PAGE:
BRANZ	FH 5027	4 March 2013	4 of 9
		ONLY BE CLAIMED ON PRESENTATION OF THE COMPLET REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSIO	

1. GENERAL

The product submitted by the client for testing was identified by the client as Seratone Escape, a nominally 4.5 mm thick high density fibre board (oil tempered hardboard) coated on the exposed face with a 220 micron multi-layered UV cured paint system. Figure 1 illustrates a representative specimen of that tested.

Figure 1 Representative specimen (back face of on left, exposed on right "Moonshine")

1.1 Sample measurements

The following physical parameters were measured for each specimen prior to testing.

	Initial p	Overall apparent	
Specimen ID	Mass (g)	Mean thickness (mm)	density (kg/m³)
FH5027-50-1 (Noir Kiss)	47.8	4.5	1,062
FH5027-50-2 (Glacier)	49.8	4.7	1,060
FH5026-50-3 (Moonshine)	49.1	4.7	1,045

THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

2. EXPERIMENTAL PROCEDURE

2.1 Test standard

The tests were carried out and data reduced according to the test procedure described in ISO 5660: (2002), Reaction-to-fire tests – Heat release, smoke production and mass loss – Part 1: Heat release rate, and Part 2: Smoke production rate (the test standard). The sample preparation and test procedure were as described in 2.4 and 2.5.

2.2 Test date

The tests were conducted on 26th November 2012 by Mr Roger Stanford at BRANZ Limited laboratories, Judgeford, New Zealand.

2.3 Specimen conditioning

All specimens were conditioned to moisture equilibrium (constant weight), at a temperature of $23 \pm 2^{\circ}$ C and a relative humidity of $50 \pm 5\%$ immediately prior to testing.

2.4 Specimen wrapping and preparation

All tests were conducted and the specimens prepared in accordance with the test standard. The spark igniter and the stainless steel retainer frame were used. All specimens were wrapped in a single layer of aluminium foil, covering the unexposed surfaces.

2.5 Test programme

The test program consisted of three replicate specimens as identified in the above table, tested at an irradiance level of 50 kW/m². All tests were carried out with the specimen horizontal, and with a nominal duct flow rate of 0.024 m³/s.

	REPORT NUMBER:	ISSUE DATE:	PAGE:	PNW	ES
BRANZ	FH 5027	4 March 2013	6 of 9	B	A
	THE LEGAL VALIDITY OF THIS REPORT CAN	ONLY BE CLAIMED ON PRESENTATION OF THE COMPLET	E SIGNED PAPER REPORT. EXTRACTS		

OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

TEST RESULTS AND REDUCED DATA 3.

Test results and reduced data – NZBC C/VM2 3.1

Material		Test specim (in acc	Mean		
Specimen test number		FH5027-50-1	FH5027-50-2	FH5027-50-3	
Time to sustained flaming	S	34	58	51	47.7
Observations ^a		-	-	-	
Test duration ^b	S	1834**	1858**	1851**	1848
Mass remaining, mf	g	0.3	2.1	-0.6	0.6
Mass pyrolyzed	%	99.4%	95.7%	101.2%	98.7%
Specimen mass loss ^c	kg/m ²	5.37	5.32	5.57	5.42
Specimen mass loss rate ^c	g/m ² .s	20.6	20.8	20.9	20.8
Heat release rate					
peak, $\dot{q}''_{ m max}$	kW/m ²	490.8	489.4	490.1	490.1
average, \dot{q}''_{avg}					
Over 60 s from ignition	kW/m ²	183.5	195.9	166.7	182.1
Over 180 s from ignition	kW/m ²	295.5	300.9	282.5	293.0
Over 300 s from ignition	kW/m ²	212.2	221.0	211.4	214.9
Total heat released	MJ/m ²	94.3	99.3	92.2	95.2
Average Specific Extinction Area	m²/kg	112.6	79.7	94.4	95.6
Effective heat of combustion ^d , $\Delta h_{c,e\!f\!f}$	MJ/kg	17.5	18.4	16.4	17.5

Notes :

^a no significant observations were recorded

^b determined by * X_{O2} returning to the pretest value within 100 ppm of oxygen concentration for 10 minutes ** 30 minutes after time to sustained flaming

^c from ignition to end of test;

^d from the start of the test

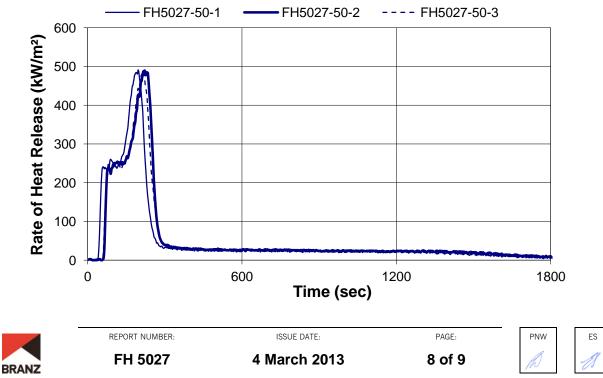
⁺ value calculated using data beyond the official end of test time according to the test standard.

NR not recorded

THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

4. SUMMARY

The test standard requires that the mean heat release rate (HRR) readings over the first 180 s from ignition for the three specimens should differ by no more than 10% of the arithmetic mean of the three readings. In the event of this criterion not being met, a further three specimens are required to be tested.


Specimen ID	Average HRR over 180s from ignition	Arithmetic mean	% difference from the arithmetic mean
FH5027-50-1	295.5		0.9
FH5027-50-2	300.9	293.0	2.7
FH5027-50-3	282.5		-3.6

The above table identifies all of the specimens exposed to 50 kW/m² irradiance met the acceptance criteria.

The report summary for the specimens as described in Section 1, exposed to an irradiance of 50 kW/m^2 is:

Mean Specimen thickness (mm)	Irradiance (kW/m ²)	Mean Time to Ignition (s)	Mean Peak Heat Release Rate (kW/m²)	Average Specific Extinction Area (m²/kg)
4.6	50	48	490.1	95.6

Figure 2 Rate of heat release versus time

THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ LTD.

5. CLASSIFICATION IN ACCORDANCE WITH NZBC VERIFICATION METHOD C/VM2 APPENDIX A

The following classification has been assessed in accordance with the New Zealand Building Code Verification Method C/VM2 Appendix A: Establishing Group Numbers for lining materials. Calculations were carried out according to section A1.3 for predicting a material's group number for each specimen tested. It states that "If a different classification group is obtained for different specimens tested, then the highest (worst) classification for any specimen must be taken as the final classification for that material." The classification for the specimens as described in Section 1 is as follows:

	Sample 1	Sample 2	Sample 3	Classification
Group number Classification	3	3	3	3

6. **DISCUSSION**

Three alternative variations in the finished colour of the specimens ranging from dark (Noir Kiss) to light (Moonshine) were tested with consistent results. It is therefore considered that any variation in the colour would not adversely affect the Group Number Classification or Average Specific Extinction Area achieved by the specimen tested in full and reported herein.

7. CONCLUSION

The cone calorimeter testing was carried out on the specimens as described in Section 1. For the purposes of compliance with the NZBC Verification Method C/VM2 Appendix A, the following classification is considered applicable to the material as described in Section 1, and others as discussed in Section 6.

Group Number Classification	3

	REPORT NUMBER:	ISSUE DATE:	PAGE:	PNW	ES
BRANZ	FH 5027	4 March 2013	9 of 9	R	A
	THE LEGAL VALIDITY OF THIS REPORT CAN ONLY BE CLAIMED ON PRESENTATION OF THE COMPLETE SIGNED PAPER REPORT. EXTRACTS OR ABRIDGMENTS OF THIS REPORT SHALL NOT BE PUBLISHED WITHOUT PERMISSION FROM BRANZ 1 TD.				